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Introduction

I Representations with invariance properties are often desired
I Spatial invariance: CNN
I Temporal invariance: RNN

I This work: a generic framework to induce invariance to a
specific factor/attribute of data

I Image classifications: classifying people’s identities invariant to
lighting conditions

I Multi-lingual machine translation (fr-en, de-en): translation
invariant to source language for sentences with the same
meaning

I Fairness classifications: predicting credit and saving conditions
invariant to the age, gender and race of a person



Problem formulation

Task:

I Given input x (images, sentences or features), attribute s (can
be discrete, continuous or structured) of x

I Predict target y

I Prior belief: Prediction should be invariant to s

I e.g., predicting identities of a person in a image. s is the
lighting condition

I Two possible data generation processes:



Discriminative model

I y and s are not independent given x although they can be
marginally independent (Explaining-away)

I p(y | x , s) is more accurate than p(y | x), i.e., knowing s
helps in inferring y.

I “brighten” the representation if it knows the original picture is
dark

I Encoder E : obtain the invariant representation h = E (x , s).
(s is used as the input of the encoder)

I Predictor M: Outputs qM(y | h) (predict y based on h)



Enforcing Invariance

I h is invariant to s means that 6 ∃f : f (h) = s
I Employ a Discriminator D to model f : Outputs qD(s | h)

(predict s based on h)
I An adversarial game to enforce invariance:

I Discriminator tries to detect s from the representation
I Encoder learns to conceal it

Two objective

I Standard MLE loss: min
E ,M
− log qM(y | h = E (x , s))

I Adversarial loss to ensure invariance:
min
E

max
D

γ log qD(s | h = E (x , s))



Theoretical Analysis

I Overall objective:

min
E ,M

max
D

J(E ,M,D)

where J(E ,M,D) is

Ex ,s,y∼p(x ,s,y) [γ log qD(s | h = E (x , s))− log qM(y | h = E (x , s))]

I Definition: p̃(h, s, y) =
∫
x p(x , s, y)pE (h | x , s)dx

I Claim 1: Given an encoder, the optimal discriminator and
optimal predictor:

I q∗D(s | h) = p̃(s | h) and q∗M(y | h) = p̃(y | h)
I Note that qD and qM are functions of E

I Claim 2: The optimal encoder is defined by:



Equilibriums Analysis

I The equilibrium of the minimax game is defined by
minE −γH(q̃(s | h)) + H(q̃(y | h))

I Win-win equilibrium:
I s and y are marginally independent
I Two entropy terms reach the optimum at the same time
I e.g., removing the lighting conditions in image classifications

results in better generalization

I Competing equilibrium:
I s and y are NOT marginally independent
I The optimal of the two entropies cannot be achieved

simultaneously
I Filtering out s from h does harm the prediction of y
I e.g., removing bias in fairness classifications hurts the overall

performance



Experiments: Fairness Classifications

I Task: Predict savings, credit and health condition based on
features of a person. s can be gender or age

I E , M, D are all DNN

Figure 1: Fair representations should lead to low accuracy on predicting factor s and
high accuracy on predicting y .



Experiments: Multi-lingual Machine Translation

I Task: Translation from German (de) and French (fr) to
English. s indicates the source language (an one-hot vector)

I E , M, D are all LSTM
I Separate encoders for different languages (Recall that

h = E (x , s)).
I Sharing encoder does not work
I DNN based discriminator (even with attention) does not work
I Lesson: It is important for E , M, D to have enough capacity

to achieve the equilibrium

Model test (fr-en) test (de-en)
Bilingual Enc-Dec [Bahdanau et al., 2015] 35.2 27.3
Multi-lingual Enc-Dec [Johnson et al., 2016] 35.5 27.7
Our model 36.1 28.1

w.o. discriminator 35.3 27.6
w.o. separate encoders 35.4 27.7

Table 1: BLEU score on IWSLT 2015. The ablation study of ”w.o. discriminator”
shows the improvement is not due to more parameters



Experiments: Image Classification

I Task: classifying identities. s is the lighting condition
I E, M, D are DNN

Method Accuracy of classifying factor s Accuracy of classifying target y
Logistic regression 0.96 0.78

NN + MMD [Li et al., 2014] - 0.82
VFAE [Louizos et al., 2016] 0.57 0.85

Ours 0.57 0.89

Table 2: Results on Extended Yale B dataset

Figure 2: t-SNE visualizations of original pictures and learned representations. The
original picture is clustered by lighting conditions. The learned representation is
clustered by identities
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